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LElTER TO THE EDITOR 

A precise determination of the backbone fractal dimension on 
two-dimensional percolation clusters 

Mark D Rintoul and Hisao Nakanishi 
Department of Physics. Purdue University, West Lalayette. IN 47907. USA 

Received 19 May 1992 

AbslracL ?he backbone fractal dimension d: is ~ l c u l a t e d  an hvo-dimensional percola- 
tion clusten at the percolation threshold. Studies are cdnied out on backbones defined 
in three different ways: bus bar. point-to-point, and with fully periodic boundaries. Ihe 
-timates of d: are obtained by measuring the variation of m a s  with radius for all 
dustem, and by means of finite size sgling on the bus bar backbones. AI1 cases imply 
a value of d: = 1.64 f 0.01 for the backbone fractal dimension. Because of the high 
degree of self-consistency of all the results, we believe that this edmate represents a 
considerably impmed accuracy. 

Percolation clusters have been suggested as models in many physical processes [1,2]. 
However, in many applications it is the backbone of the percolation cluster, rather 
than the percolation cluster itself, that contains the relevant physics. The backbone 
is usually defined for a finite system as the bonds which carry a DC electrical current 
between two points, or sets of points, kept at different voltages. Other physical 
realizations where the backbone may play an essential role include fluid Row in porous 
media, and the elasticity of gels. A more geometrical definition of the backbone is the 
union of all self-avoiding walks between two sets of points. This allows an extension 
of the definition of the backbone to infinite systems, where it is defined as the union 
of all infinite self-avoiding walks originating from a given set of points. 

Extensive research has been done on the backbone to determine various quantities 
which characterize its structure. One of the most important of these quantities is its 
fractal dimensionality, d:, which describes the distribution of mass surrounding any 
given point. There have been many previous simulations done to determine d: for 
various dimensionalities and structures. Unfortunately, the results of these simulations 
have varied significantly from work to work. In two dimensions reported values for 
dp range from 1.60 to 1.68, and this variation is even larger in higher dimensions 
[HI. In this letter, we propose to obtain a very accurate determination of d? using 
three different backbone structures and two different methods. 

The exponent d: is just a measure of how the mass of a cluster backbone varies 
asymptotically with distance from a given point on a cluster and is defined by the 
following relationship 

M ( R )  ci RdF. 
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This allows d: to be determined by looking at the amount of mass contained in disks 
with different R centred about a random set of points in a cluster. The backbone 
fractal dimension can also be calculated from the scaling relation 

d: = d - &/U (2) 

where U is the standard correlation length exponent (presumed to be 413 in two 
dimensions) and P, describes the total fraction of sites which belong to the backbone 

Applying finite-size scaling to equation (3) we obtain 

P(P3 L )  a IP - p , l @ ” f ( L l p -  P , I Y )  
CX L - ~ + g ( ( p - p c J L ’ / u ) .  

Evaluating equation (5) at p = p ,  gives 

where L is the length scale of the lattice containing the cluster. If P ( p , , L )  is 
calculated for various L a value of p,/u can be found and d? can be determined. 
Similar methods were used to obtain d: for the point-to-point backbone by Herrmann 
er al (31 and for the fully periodic backbone by Puech and Rammal [5] ,  where they 
reported an accurate determination of d: equal to 1.60 f 0.05 and 1.68 f 0.02, 
respectively. It should be noted that these two estimates do not have overlapping 
error bars. Since the standard static percolation exponents such as 7, 0 and U are 
known exactly (see, e.g., 121) for two dimensions, we should address the seeming 
indeterminacy for d:. 

The first backbone structure which we study is the bus bar backbone structure. 
This structure represents the current carrying bonds on a random resistor network 
on which two opposite edges are kept at different potentials. The bus bar backbones 
were created by first labelling a site on an L x L square lattice as either occupied 
or unoccupied based on a given probability. The largest cluster was then identified 
and accepted if it spanned from one side of the cluster to the opposite side. The bus 
bar boundary conditions were then applied and the dangling ends removed through 
a burning algorithm similar to that described by Herrmann a al 131. A depth-first 
backbone extraction algorithm was also written to check that the burning algorithm 
was working properly. 

The exponent d: was first directly measured by the method using disks as de- 
scribed earlier. A measure of the mass as a function of radius was averaged over 100 
randomly selected points throughout each disorder configuration and these averages 
were subsequently averaged over 1000 different configurations. The different radii 
used were taken in integer steps, until the edge of the original lattice was reached. 
The lattice size, L ,  ranged from 100 to 1ooO. The resulting graph of mass as a 
function of the disk radius, R, Cor L = 1000 is shown in figure 1. The slope remains 
remarkably constant for most values of R, as the inset shows. Only for large R does 
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Figure I. (U)  Plat of m a s  against radius for bus Figure Z Plot of lhe average density of the bus 
bar backbones. These data were taken from the bar trackbans BS a funclian of lattice sue. The 
backbones of dusters generated on a 1000 x 1000 slope of this line should be equal to - @ B / Y  and 
latlice. There were lMHl dusters sampled wilh 1W has a numerical value of 0.365 f 0.005. This 
sample points laken on each cluster as disk cenlres. mrresponds lo a value of 1.635 * 0.005 for d?. 
(b) The inset is a graph of lhe effective dope of lhe 
line in (0). This dope was Cdlculated by including 
successively larger disk radii in the same way BS in 
[91. 

the slope decrease due to edge effects. The slope of the graph corresponds to a value 
of 1.64 k 0.01. Similar graphs for different L show no significant differences. 

The cluster density at p = p ,  = 0.59273 is plotted against L in figure 2 For 
this data, we chose 100 < L 6 1000, and the number of clusters generated varied 
from i o 5  for L = 100, to 1000 for L = 1000. If finite size scaling laws apply, 
the slope of a line fit to the data should give a value of &/U. For our data, 
we find &/U = 0.365 i 0.005, which corresponds to a value of 1.635 i 0.005 
for d:. Figure 3 shows all of our data for p # pc  collapsed into a single plot of 
P ( p ,  L ) l p  - p,l-Pe against Lip - p,J". All of the points tend to fall on two lines, 
representing the two branches of f(3) (as defined in equation (4)) for p < p ,  and 
P > P,. 

The second type of backbone that we studied was the point-to-point (PP) back- 
bone. This backbone was generated by methods similar to that of the bus bar back- 
bone, except that the bus bar boundary conditions were not applied. For this case, the 
two most diagonally opposite points were chosen from each edge, and the backbone 
between those two points was identified. Simulations were done for 100 6 L 6 1000. 
These runs once again gave a d u e  of 1.64 i 0.01 for d?, from the calculation of 
the slope of the mass against radius plot. The graph for L = 1000 k shown in 
figure 4. At large R the slope drops off much mare rapidly with radius than the 
bus bar backbone does, which is to be expected because the 'stringier' nature of the 
backbone causes the finite size effect to become more pronounced. 

The third type of backbone we looked at was the backbone defined on an infinitely 
periodic cluster. ?b construct this object, we first created a percolation cluster on an 
L x L lattice and identified the largest cluster. This cluster was accepted if it was 
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Flgum 3. Plat of P ( p ,  L ) l p - p c l - 6 @  as a function 
of Llp - p c l y  for all &la where p # p c .  The two 
curves represent the two branches of f ( z )  from 
equation (9, where p < p ,  for the lower branch 
and p > p c  for the upper branch. 

Figure 4 Plat of m a s  against radius tar the point- 
to-point (@) and fully periodic (+) backbones. 
Thew data were taken from the backbones of dus- 
ters generated on a 1000 x 1000 lattice. There 
were IOW clusters of each we sampled with 1W 
sample points uken on each duster. 

wrapping in both directions, otherwise it was rejected. Periodic boundary conditions 
were then imposed and other smaller clusters were then added if the boundary 
conditions caused them to become connected to the largest cluster. The dangling 
ends were then removed by a burning algorithm similar to the one used in the 
previous type of backbone. These data again yielded a value of 1.64 0.01 for 
d:, although the value of the exponent rose dramatically Cor large radii due to edge 
effects. These data are also shown in figure 4. 

Tb summarize our results, we believe that the value of d? in WO dimensions is 
1.64f0.01. Thk value was obtained using three different types of backbones, and two 
very different methods for extracting the value of the exponent. This provided a self- 
consistency check Cor our result. This result is also consistent with other published 
results. The stringent internal consistency requirement it passes indicates that our 
estimate is indeed a rather accurate one. 
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